Source code for indra.assemblers.sif.assembler

from __future__ import absolute_import, print_function, unicode_literals
import json
from builtins import dict, str
import numpy
import logging
import itertools
import networkx as nx
from indra.statements import *

logger = logging.getLogger(__name__)


[docs]class SifAssembler(object): """The SIF assembler assembles INDRA Statements into a networkx graph. This graph can then be exported into SIF (simple interaction format) or a Boolean network. Parameters ---------- stmts : Optional[list[indra.statements.Statement]] A list of INDRA Statements to be added to the assembler's list of Statements. Attributes ---------- graph : networkx.DiGraph A networkx graph that is assembled by this assembler. """ def __init__(self, stmts=None): if stmts is None: self.stmts = [] else: self.stmts = stmts self.graph = nx.DiGraph() self._use_name_as_key = False
[docs] def make_model(self, use_name_as_key=False, include_mods=False, include_complexes=False): """Assemble the graph from the assembler's list of INDRA Statements. Parameters ---------- use_name_as_key : boolean If True, uses the name of the agent as the key to the nodes in the network. If False (default) uses the matches_key() of the agent. include_mods : boolean If True, adds Modification statements into the graph as directed edges. Default is False. include_complexes : boolean If True, creates two edges (in both directions) between all pairs of nodes in Complex statements. Default is False. """ self.graph = nx.DiGraph() self._use_name_as_key = use_name_as_key for st in self.stmts: support_all = len(st.evidence) support_pmid = len(set([ev.pmid for ev in st.evidence if ev.pmid is not None])) attr = {'polarity': 'unknown', 'support_all': support_all, 'support_pmid': support_pmid} if isinstance(st, RegulateActivity): attr['polarity'] = ('positive' if st.is_activation else 'negative') self._add_node_edge(st.subj, st.obj, attr) elif include_mods and isinstance(st, Modification): self._add_node_edge(st.agent_list()[0], st.agent_list()[1], attr) elif include_mods and \ (isinstance(st, Gap) or isinstance(st, DecreaseAmount)): attr['polarity'] = 'negative' self._add_node_edge(st.agent_list()[0], st.agent_list()[1], attr) elif include_mods and \ (isinstance(st, Gef) or isinstance(st, IncreaseAmount)): attr['polarity'] = 'positive' self._add_node_edge(st.agent_list()[0], st.agent_list()[1], attr) elif include_complexes and isinstance(st, Complex): # Create s->t edges between all possible pairs of complex # members for node1, node2 in itertools.permutations(st.members, 2): self._add_node_edge(node1, node2, attr)
def _add_node_edge(self, s, t, attributes): if s is not None: s = self._add_node(s) t = self._add_node(t) self._add_edge(s, t, attributes) def set_edge_weights(self, attribute): max_val = 0 for s, t, attr in self.graph.edges(data=True): max_val = max(attr[attribute], max_val) if max_val > 0: for s, t, attr in self.graph.edges(data=True): self.graph[s][t]['weight'] = \ 1.0 / attr[attribute]
[docs] def print_model(self, include_unsigned_edges=False): """Return a SIF string of the assembled model. Parameters ---------- include_unsigned_edges : bool If True, includes edges with an unknown activating/inactivating relationship (e.g., most PTMs). Default is False. """ sif_str = '' for edge in self.graph.edges(data=True): n1 = edge[0] n2 = edge[1] data = edge[2] polarity = data.get('polarity') if polarity == 'negative': rel = '-1' elif polarity == 'positive': rel = '1' elif include_unsigned_edges: rel = '0' else: continue sif_str += '%s %s %s\n' % (n1, rel, n2) return sif_str
[docs] def save_model(self, fname, include_unsigned_edges=False): """Save the assembled model's SIF string into a file. Parameters ---------- fname : str The name of the file to save the SIF into. include_unsigned_edges : bool If True, includes edges with an unknown activating/inactivating relationship (e.g., most PTMs). Default is False. """ sif_str = self.print_model(include_unsigned_edges) with open(fname, 'wb') as fh: fh.write(sif_str.encode('utf-8'))
[docs] def print_loopy(self, as_url=True): """Return Parameters ---------- out_file : Optional[str] A file name in which the Loopy network is saved. Returns ------- full_str : str The string representing the Loopy network. """ init_str = '' node_id = 1 node_list = {} for node, data in self.graph.nodes(data=True): node_name = data['name'] nodex = int(500*numpy.random.rand()) nodey = int(500*numpy.random.rand()) hue = int(5*numpy.random.rand()) node_attr = [node_id, nodex, nodey, 1, node_name, hue] node_list[node] = node_attr node_id += 1 nodes = list(node_list.values()) edges = [] for s, t, data in self.graph.edges(data=True): s_id = node_list[s][0] t_id = node_list[t][0] if data['polarity'] == 'positive': pol = 1 else: pol = -1 edge = [s_id, t_id, 89, pol, 0] edges.append(edge) labels = [] components = [nodes, edges, labels] model = json.dumps(components, separators=(',', ':')) if as_url: model = 'http://ncase.me/loopy/v1/?data=' + model return model
[docs] def print_boolean_net(self, out_file=None): """Return a Boolean network from the assembled graph. See https://github.com/ialbert/booleannet for details about the format used to encode the Boolean rules. Parameters ---------- out_file : Optional[str] A file name in which the Boolean network is saved. Returns ------- full_str : str The string representing the Boolean network. """ init_str = '' for node_key in self.graph.nodes(): node_name = self.graph.nodes[node_key]['name'] init_str += '%s = False\n' % node_name rule_str = '' for node_key in self.graph.nodes(): node_name = self.graph.nodes[node_key]['name'] in_edges = self.graph.in_edges(node_key) if not in_edges: continue parents = [e[0] for e in in_edges] polarities = [self.graph.edges[(e[0], node_key)]['polarity'] for e in in_edges] pos_parents = [par for par, pol in zip(parents, polarities) if pol == 'positive'] neg_parents = [par for par, pol in zip(parents, polarities) if pol == 'negative'] rhs_pos_parts = [] for par in pos_parents: rhs_pos_parts.append(self.graph.nodes[par]['name']) rhs_pos_str = ' or '.join(rhs_pos_parts) rhs_neg_parts = [] for par in neg_parents: rhs_neg_parts.append(self.graph.nodes[par]['name']) rhs_neg_str = ' or '.join(rhs_neg_parts) if rhs_pos_str: if rhs_neg_str: rhs_str = '(' + rhs_pos_str + \ ') and not (' + rhs_neg_str + ')' else: rhs_str = rhs_pos_str else: rhs_str = 'not (' + rhs_neg_str + ')' node_eq = '%s* = %s\n' % (node_name, rhs_str) rule_str += node_eq full_str = init_str + '\n' + rule_str if out_file is not None: with open(out_file, 'wt') as fh: fh.write(full_str) return full_str
def _add_node(self, agent): if self._use_name_as_key: node_key = agent.name else: node_key = agent.matches_key() self.graph.add_node(node_key, name=agent.name) return node_key def _add_edge(self, s, t, edge_attributes=None): if edge_attributes is None: self.graph.add_edge(s, t) else: self.graph.add_edge(s, t, **edge_attributes)