Source code for indra.sources.isi.processor

import os
import json
import logging
from copy import deepcopy
import indra.statements as ist
from indra.preassembler.grounding_mapper.gilda import ground_statements

logger = logging.getLogger(__name__)


[docs]class IsiProcessor(object): """Processes the output of the ISI reader. Parameters ---------- reader_output : json The output JSON of the ISI reader as a json object. pmid : Optional[str] The PMID to assign to the extracted Statements extra_annotations : Optional[dict] Annotations to be included with each extracted Statement add_grounding : Optional[bool] If True, Gilda is used as a service to ground the Agents in the extracted Statements. Attributes ---------- verbs : set[str] A list of verbs that have appeared in the processed ISI output statements : list[indra.statements.Statement] Extracted statements """ def __init__(self, reader_output, pmid=None, extra_annotations=None, add_grounding=False): self.reader_output = reader_output self.pmid = pmid self.extra_annotations = extra_annotations if \ extra_annotations is not None else {} self.verbs = set() self.statements = [] self.add_grounding = add_grounding
[docs] def get_statements(self): """Process reader output to produce INDRA Statements.""" for k, v in self.reader_output.items(): for interaction in v['interactions']: self._process_interaction(k, interaction, v['text'], self.pmid, self.extra_annotations) if self.add_grounding: ground_statements(self.statements)
def _process_interaction(self, source_id, interaction, text, pmid, extra_annotations): """Process an interaction JSON tuple from the ISI output, and adds up to one statement to the list of extracted statements. Parameters ---------- source_id : str the JSON key corresponding to the sentence in the ISI output interaction: the JSON list with subject/verb/object information about the event in the ISI output text : str the text of the sentence pmid : str the PMID of the article from which the information was extracted extra_annotations : dict Additional annotations to add to the statement's evidence, potentially containing metadata about the source. Annotations with the key "interaction" will be overridden by the JSON interaction tuple from the ISI output """ # Note: interaction[1] is a catalyst, but unused due to a lack of ways # to represent it with Statements. verb = interaction[0].lower() subj = interaction[-2] obj = interaction[-1] # Make ungrounded agent objects for the subject and object # Grounding will happen after all statements are extracted in __init__ subj = self._make_agent(subj) obj = self._make_agent(obj) # Make an evidence object annotations = deepcopy(extra_annotations) if 'interaction' in extra_annotations: logger.warning("'interaction' key of extra_annotations ignored" + " since this is reserved for storing the raw ISI " + "input.") annotations['source_id'] = source_id annotations['interaction'] = interaction ev = ist.Evidence(source_api='isi', pmid=pmid, text=text.rstrip(), annotations=annotations) # Add the verb to the set of verbs. self.verbs.add(verb) statement = None if verb in verb_to_statement_type: statement_class = verb_to_statement_type[verb] if statement_class == ist.Complex: statement = ist.Complex([subj, obj], evidence=ev) else: statement = statement_class(subj, obj, evidence=ev) if statement is not None: # For Complex statements, the ISI reader produces two events: # binds(A, B) and binds(B, A) # We want only one Complex statement for each sentence, so check # to see if we already have a Complex for this source_id with the # same members already_have = False if type(statement) == ist.Complex: for old_s in self.statements: old_id = statement.evidence[0].source_id new_id = old_s.evidence[0].source_id if type(old_s) == ist.Complex and old_id == new_id: old_statement_members = \ [m.db_refs['TEXT'] for m in old_s.members] old_statement_members = sorted(old_statement_members) new_statement_members = [m.db_refs['TEXT'] for m in statement.members] new_statement_members = sorted(new_statement_members) if old_statement_members == new_statement_members: already_have = True break if not already_have: self.statements.append(statement) @staticmethod def _make_agent(agent_str): """Makes an ungrounded Agent object from a string specifying an entity. Parameters ---------- agent_str : str A string specifying the agent Returns ------- agent : indra.statements.Agent An ungrounded Agent object referring to the specified text """ return ist.Agent(agent_str, db_refs={'TEXT': agent_str})
[docs] def retain_molecular_complexes(self): """Filter the statements to Complexes between molecular entities.""" self.statements = [s for s in self.statements if isinstance(s, ist.Complex) and all(is_molecular(m) for m in s.members)]
def is_molecular(agent): if agent is None: return False db, id = agent.get_grounding() return (db is not None and db in {'HGNC', 'UP', 'CHEBI', 'PUBCHEM', 'UPPRO', 'FPLX'}) # Load the mapping between ISI verb and INDRA statement type def _build_verb_statement_mapping(): """Build the mapping between ISI verb strings and INDRA statement classes. Looks up the INDRA statement class name, if any, in a resource file, and resolves this class name to a class. Returns ------- verb_to_statement_type : dict Dictionary mapping verb name to an INDRA statment class """ path_this = os.path.dirname(os.path.abspath(__file__)) map_path = os.path.join(path_this, 'isi_verb_to_indra_statement_type.tsv') with open(map_path, 'r') as f: first_line = True verb_to_statement_type = {} for line in f: if not first_line: line = line[:-1] tokens = line.split('\t') if len(tokens) == 2 and len(tokens[1]) > 0: verb = tokens[0] s_type = tokens[1] try: statement_class = getattr(ist, s_type) verb_to_statement_type[verb] = statement_class except Exception: pass else: first_line = False return verb_to_statement_type verb_to_statement_type = _build_verb_statement_mapping()